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1 Introduction
Some of the most interesting problems in number theory, nay, in mathematics
involve the problem of factoring numbers in algebraic extensions of the integers.
In some cases, such as the Gaussian integers, Z[i], we have unique factorization,
mirroring factorization in the natural numbers. In other cases, such as Z[

√−5],
numbers can factor in more ways than one. In order to find out when unique
factorization is possible, Kummer introduced the concept of ideal numbers, and
from thisDedekind developed the concept of Ideals. It turns out that when we look
at ideals, we can recapture the notion of unique factorization. In fact, if all ideals
in our integer ring are equivalent - we are working in a Principal Ideal Domain
- we have Unique Factorization with numbers, not just ideals. In other words,
Unique Factorization follows from the class number being one.

Our challenge now lies in determining which number fields have class number
one. In many ways, Imaginary Quadratic number fields are the simplest exten-
sions of Q. Many people worked on the class number one problem; determining
exactly which quadratic number fields have class number one. It had been known
that Q(

√
d) where d = −1,−2,−3,−7,−11,−19,−43,−67 and −163 had class

number one, and it was long conjectured that this was a complete list. The first
proof of this fact was published in 1952 by Kurt Heegner [6], but his unfortunately
proof was not accepted by the mathematical community. Heegner’s method in-
volves fairly basic mathematics, using modular functions to reduce the problem
to finding solutions of a particular Diophantine Equation. Heegner leaned heavily
on the work of mathematician H. Weber, particularly his 1908 book, Lehrbuch der
Algebra. Unfortunately, Heegner failed to prove some of the claims in his paper,
particularly when it came to showing that specific numbers lie in the Hilbert Class
Field of K = Q(

√
d).

Soon enough, the problem was solved separately using analytic methods by
both Baker and Stark: Baker using Linear Forms in Logarithms, and Stark using
L-functions. However, the elegant simplicity of Heegner’s class field theoretic
proof was irresistible, and in the late 1960s mathematicians began to look at it
again. The supposed hole in Heegner’s proof was then patched up by both Stark
[11] and Deuring [5], both of them publishing elegant algebraic proofs. It is a
version of these proofs which is presented here.

In order to build up our proof, we need to borrow from several areas of mathe-
matics: Classical Algebraic Number Theory, Class Field Theory, Quadratic Forms,
Complex Multiplication, Modular Functions and Forms, and finally Diophantine
Equations.
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2 Some Background Material

2.1 The Ideal Class Number
In order to find the Imaginary Quadratic fields with class number one, we first
need to understand what the class number is.

Let K be an algebraic number field.

Definition 1. O is called an order of K if:

1. O is a subring of K containing 1;

2. O is a finitely generated Z-module; and

3. O contains a Q-basis of K.

From the definition, one can easily show that an order consists of algebraic
integers, that is elements whose minimal polynomial over Z is monic. In fact,
the maximal order of K is the Ring of Integers, OK := {a ∈ K | the minimal
polynomial of a is monic}. That is, every order O ⊂ OK .

We care mostly about OK , but in order to simplify our proofs, we will some-
times need to work with a general order in K. It is interesting to note that all of
the theory of ideal classes can be generalized using any order.

In order to set up the class group, we introduce an equivalence relation on the
ideals of OK . Two ideals a and b ⊂ OK are equivalent (denoted a ∼ b) if there
exists a, b ∈ OK such that

aa = bb

The identity element in our group is [(1)], the set of all principal ideals. When
we are working with OK , we will by abuse of notations refer to ideals as being in
K.

Definition 2. The Group formed by the equivalence classes of OK is called the
Ideal Class Group, IK of K. The order of this group, that is the number of distinct
Ideal classes in OK is called the Class Number of OK and is denoted h(OK) or
simply h(K).

Remark 1. We note that our equivalence relation is independent of whether a and
b are ideals in OK , or in another order, O. By restricting to ideals in a given order,
O, we can form an ideal class group over any order O, with class number h(O).
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2.2 Imaginary Quadratic Fields
Let d < 0 be a square-free integer. Then K = Q(

√
d) is called an Imaginary

Quadratic Number Field. The discriminant of Q(
√

d) is:

∆d :=
{ d if d ≡ 1 (mod 4)

4d otherwise.

When it is clear form the context what d is, we write ∆. Asking for d to
be square-free ensures that each field is unique. We note that since Q(

√
l2d) =

Q(
√

d), we need d to be square-free in order for the discriminant to be well de-
fined.

The Ring of Integers, OK of K = Q(
√

d) is:

OK :=
{
Z[1+

√
d

2 ] if d ≡ 1 (mod 4)
Z[
√

d] otherwise.

Remark 2. By relaxing our restriction on d being square-free, that is letting D =

l2∆ for some l, we can find an order, Ol, with discriminant D = l2∆;

Ol :=
{
Z[ l+l

√
d

2 ] if l2d ≡ 1 (mod 4)
Z[l
√

d] otherwise

It can be shown that these are the only orders in a Imaginary Quadratic field.

Remark 3. An interesting fact, which we will exploit, is that any ideal in a number
field can be viewed as being generated by at most two elements. That is, if a ⊂ OK ,
then a = [α, β] for some, α, β ∈ OK , which are linearly independent over Q. [2]
This gives rise to a natural correspondence between an ideal a = [α, β] ⊂ K and a
lattice in the Complex plane, Λ = αZ ⊕ βZ.

In fact, the lattices obtained in this way (and only this way) are special lattices
known as Complex Multiplication or CM lattices; this leads us to our next topic.

2.2.1 Complex Multiplication

Definition 3. The endomorphisms R(Λ) of a lattice are the complex numbers α
such that α = 0 or αΛ is a sublattice of Λ. These endomorphisms form a ring
under the natural operations of Λ, αβΛ = α(βΛ), (α + β)Λ = αΛ + βΛ. Thus,
R ⊃ Z. The same definition gives R(c), the endomorphism ring of a class of
lattices. We say that complex multiplication exists if this ring is strictly larger than
Z. [3]
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The complex multiplications, the elements in R but not in Z, are genuinely
complex, that is nonreal. For any CM lattice Λ, R is an order of K = Q(

√
d), for

some d < 0. Any lattice with complex multiplication, then, is proportional to the
lattice generated by OK , hence generated by an ideal in OK .

Using the natural correspondence between ideals and lattices, we can see that
our ideal equivalence relationship is the same as the natural equivalence of their
corresponding lattices. That is, a ∼ b if and only if the lattices they generate are
equivalent under the action of SL2(Z). We will return to this concept when we
introduce the j-invariant, a natural way of classifying both lattices and ideals.

2.3 Ramification and the Hilbert Class Field
Let K be a number field, and L a Galois extension of K.

We are particularly interested in the case where L is an abelian extension of
K, that is the Galois group G = Gal(L/K) is abelian.

We know that any ideal a ⊂ OK factors uniquely into prime ideals, a =

p1 · · · pr, pi ⊂ OK . Any prime p ⊂ OK divides a unique rational prime, p, that
is (p) ⊂ p or p | p in OK .

However, when we take an extension of K, p might not be prime in the ex-
tension L. Let p be prime in OK . Then we can lift p into L, by allowing pOL

to be called (by abuse of notation) simply p. Now we can decompose: pOL =

Be1
1 · · ·B

eg
g , where Bi ⊂ OL are prime.

Diagrammatically we have:

L OL ⊃ B

K OK ⊃ p

Q Z � p

WhereB | p | p, p in this context being the ideal generated by p in OL. We have
the following tower of finite fields:

Z/pZ ⊂ OK/pOK ⊂ OL/BOL

where each field is a finite field of characteristic p. The degrees of these
extensions are important enough to give them a name:
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Definition 4. 1. [OL/Bi : OK/p] = fi is called the inertial degree of p in Bi.

2. ei is called the ramification index of p in Bi.

We now use a powerful theorem from Class Field theory:

Theorem 1. If p is prime in K, and p = Be1
1 · · ·B

eg
g in OL, then we have:

g∑

i=1

ei fi = [L : K].

In addition, if L/K is a Galois extension, then:

1. G = Gal(L/K) acts transitively on primes dividing p, that is, if B1,B2|p
then there exists σ ∈ G such that σ(B1) = B2 .

2. All Bi ⊂ L containing p have the same ramification index and inertial de-
gree. Thus, we have:

p = Be
1 · · ·Be

g

where [OL/Bi : OK/p] = f and thus

e f g = [L : K].

For the proof of this theorem we refer to [9].

Definition 5. Let p = Be
1 · · ·Be

g decompose in L as above, then:

• If e = 1, we say p is unramified in L;

• If g = [L : K], and e = f = 1, we say that p splits completely (or is
completely split) in L;

• If e > 1, we say p is ramified in L;

• If e > 1 and f = 1, then we say p is totally ramified in L; and

• If g = 1 and e = 1, p is inert.

We can show that there are only finitely many ramified primes in a given ex-
tension, by observing that a ramified prime must divide the discriminant.

One way to think of the ramification theory is to look at how rational primes
act in K = Q(

√
d). We note that since [K : Q] = 2, we only have three options for

rational primes:
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• g = 2, e = f = 1: we know that p is the product of two distinct ideals, that
is, p is split;

• g = 1, e = 1, f = 2: p is a prime ideal in K, so p is inert; or

• g = 1, e = 2, f = 1: p is the square of a prime ideal, and p is ramified.

Ramified primes are often referred to as ‘bad’ primes; we often try to avoid
them.

The idea of class field theory, the so-called “dream of Kronecker’s youth”, is to
concoct an extension L of K where primes in K behave in a suitable fashion. Our
quest is for unique factorization, that is we need all of our ideals to be principal. If
we can find an extension L where all ideals in K lift to principal ideals in L, tasks
will be greatly simplified.

On the other hand, we note that many theorems will fail in the case where
p is ramified in L, so we think about finding an unramified extension. As well,
things are easiest in Abelian extensions, so we might as well throw that onto our
wishlist. Lastly, we would like to have some specific conditions which tell us
when an (unramified) prime in K splits completely in L.

One of the miracles of class field theory is that such a field always exists. In
fact, it is also unique, and thus deserves the grand name of the Hilbert Class Field.

Definition 6. The Hilbert Class Field of a number field K is the maximal (rela-
tively) Abelian unramified extension L/K.

We now state without proof some interesting properties of the Hilbert Class
Field, we refer the reader to [9]:

• For each K, L is unique.

• The Galois group G = Gal(L/K) is isomorphic to the ideal class group, IK ,
and [L : K] = h(K).

• Every ideal a ⊂ K lifts to become principal in L. We note however that L
may contain non-principal ideals as well.

• If p ⊂ K is principal and unramified, it splits completely in L. This is the
principalization property.

• There may exist intermediate fields K ⊂ L′ ⊂ L such that L′ also has the
principalization property.
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• There are no nontrivial unramified relatively abelian extensions of K if
h(K) = 1.

Remark 4. There are other class fields besides the Hilbert Class field. We can
find these by restricting to an order O ⊂ K. In a quadratic imaginary field, we
can build a class field which has the same properties, restricting to some Ol, with
discriminant l2∆. This class field has degree h(Ol).

The last thing we will use about the Hilbert Class Field is some knowledge
of its automorphisms, namely the Frobenius map. If G = Gal(L/K), then every
σ ∈ G is generated as the Frobenius automorphism of some B, that is for every
α ∈ K:

σ(α) ≡ αp (mod B)

We refer to σ as ( L/K
B

), which is called the Artin Symbol. If B1 and B2 both
divide p, then their Frobenius automorphisms are conjugate. If G is abelian, then
they are the same, and we write σ = ( L/K

p
).

2.4 Quadratic Forms
Quadratic forms turn out to be integral to the study of Quadratic Imaginary fields.
We introduce an equivalence relation on quadratic forms, the show how this relates
to the ideal class group, IK .

Let Q(x, y) = ax2 + bxy + cy2 ∈ Z[x, y] be a quadratic form. We define the
discriminant of Q to be:

D := b2 − 4ac.

We say that two quadratic forms, Q and Q̃ are equivalent if Q(ax + b, cy + d) =

Q̃(x, y) for some
(

a b
c d

)
∈ SL2(Z), and we write Q ∼ Q̃. A calculation shows

that under this unimodular transformation, the discriminant remains the same,
therefore if Q ∼ Q̃, then Q and Q̃ have the same discriminant. We call the number
of equivalence classes of quadratic forms of discriminant D the form class number
of D, denoted h(D). It should be of no surprise to the reader that when Z[

√
d] is

an order in an imaginary quadratic number field, then the form class number is
actually equal to the ideal class number, and we call it just the class number.

Theorem 2. The map Q(x, y) = ax2 + bxy + cy2 7→ [a, b2+
√

d
2 ] gives a bijection

between the form class group and the ideal class group. This shows that the
form class number h(D) is equal to the ideal class number h(K), where D is the
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discriminant of Q(x, y) and the discriminant of the imaginary quadratic field, K =

Q(
√

d).

We note that the discriminant of OK is equal to either d or 4d.

Remark 5. Again, we use the order OK , but it should be noted that this proof
extends to a general order, thus h(l2∆) = h(Ol).

Proof. Let f (x, y) and g(x, y) be positive definite quadratic forms with discrimi-
nant D. By positive definite-ness, both f and g have no real roots, and thus have
exactly one root lying inH . Let τ, τ′ ∈ H such that:

f (τ, 1) = g(τ′, 1) = 0.

By the definition of equivalence under quadratic forms, f ∼ g if and only if τ′ =

γτ, for γ ∈ SL2(Z).
Now, since a is positive, τ = b2+

√
d

2a (as this is in the upper half plane). Clearly,
τ ∈ K, and aτ ∈ OK , as its minimal polynomial is monic. Consider the ideal:

[
a,

b2 +
√

d
2

]
= [a, aτ] = a[1, τ] ⊂ OK

If f / g, then as lattices a[1, τ] / a′[1, τ′]. Thus, we have shown that our map
is injective.

Next, we show that the map is also surjective.
Let a be an ideal in OK . a corresponds to a lattice, a = [α, β]. By switching α

and β as necessary, without loss of generality let τ =
β

α
∈ H . Let f be the minimal

(positive definite) quadratic polynomial of τ. Then under our map f 7→ a[1, τ],
we have:

a = [α, β] = α
[
1,
β

α

]
= α[1, τ] ∼ a[1, τ]

from the definition of equivalence.
Thus the map is surjective, and hence a bijection. This proves that our two

definitions of the class number are equal, that is h(OK) = h(D) when D is the
discriminant of K = Q(

√
d). �

Remark 6. Gauss defined an operation, called composition, on the set of quadratic
forms. Using composition, a group structure can be imposed on the set of equiva-
lence classes of quadratic forms. In fact, we could make our theorem even stronger
by looking at this group structure, and showing that as groups our two sets are iso-
morphic. However, as nice as this is, it is a little irrelevant to our purposes.
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2.5 Modular Functions and the j-invariant
Definition 7. The j-invariant is defined on the upper half planeH as:

j(τ) :=
1728g3

2(τ)
∆(τ)

where
∆(τ) := g3

2(τ) − 27g2
3(τ);

g2(τ) := 60
∑

c,d∈Z
(c,d),(0,0)

1
(cτ + d)4 ;

and
g3(τ) := 140

∑

c,d∈Z
(c,d),(0,0)

1
(cτ + d)6 .

The functions g2 and g3 are the weight four and six Eisenstein Series.

The j-invariant features heavily in the study of lattices in the Complex plane,
and hence in the classification of ideals in Imaginary Quadratic number fields. It
has the following important properties:

1. j is invariant under the action of SL2(Z), as fractional linear transformations,
that is:

j(γτ) = j(τ) for γ ∈ SL2(Z)

where γτ = aτ+b
cτ+d when γ =

(
a b
c d

)
.

2. If j(τ) = j(τ′), then τ = γτ′, for some γ ∈ SL2(Z)

3. j has a Fourier (or q) expansion, that is,

j(τ) =
1
q

+

∞∑

n=0

anqn

where traditionally we let q = e2πiτ.

4. j is analytic on the upper half plane,H , with a simple pole at∞.

j is an example of a more general class of functions called modular (or weakly
modular) functions.
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2.5.1 Congruence Subgroups

When working with modular functions, we will need the following important sub-
groups of SL2(Z):

Definition 8. Let

Γ(N) :=
{ (

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣ a ≡ d ≡ 1, b ≡ c ≡ 0 (mod N)
}

be the Principal Congruence Subgroup of Level N.

Definition 9. A Congruence Subgroup is a subgroup, Γ, with Γ(N) ⊂ Γ ⊂ SL2(Z),
for some N. The minimal N for which this is true is called the level of Γ.

The most important congruence subgroups for our purposes are

Γ0(N) :=
{ (

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣ c ≡ 0 (mod N)
}

and

Γ1(N) :=
{ (

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣ c ≡ 0, a ≡ d ≡ 1 (mod N)
}
.

2.5.2 Modular Functions

Definition 10. For k a non-negative integer, the weight k operator, [γ]k, is defined
as:

f [γ]k(τ) = (cτ + d)−k f (γτ)

for γ =

(
a b
c d

)
∈ SL2(Z).

Remark 7. 1. [γ]k has the following property: [γ]k[γ′]k = [γγ′]k for any
γ, γ′ ∈ SL2(Z).

2. For any γ ∈ SL2(Z), γ maps H onto H , thus the action of SL2(Z) is well
defined on the upper half plane.

Let Γ ⊂ SL2(Z) be a congruence subgroup of level N.

Definition 11. A Modular Function of weight k for Γ, f (τ), is a meromorphic
function on the upper half plane,H , such that:
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1. f [γ]k(τ) = f (τ) for any γ ∈ Γ;

2. f (τ) =
∑

n>M

anqn
N where qN = e2πiτ/N and M ∈ Z; in other words, f possesses

a Fourier expansion with only finitely many negative terms; and

3. f (τ) is meromorphic at its cusps, that is, the Fourier expansion of f [γ]k(τ)
must have finitely many negative terms for every γ ∈ SL2(Z).

We sometimes say that f (τ) is weakly modular (of weight k) for Γ. Often we
will leave out the k and Γ, if it is clear from the context what they are.

From what we know about the j-invariant, we can now say that j is a modular
function of weight 0 for SL2(Z).

Fact 1. Any function f which is weakly modular for Γ0(N) of weight 0, which
has rational coefficients in its q-expansion is rational in j(τ) and j(Nτ), so f (τ) ∈
Q( j(τ), j(Nτ)). [2]

Definition 12. 1. We say f is a modular form (of weight k for Γ) if:

(a) f is weakly modular for Γ; and

(b) f is holomorphic at its cusps (so the q-expansion of f [γ]k(τ) for any
γ ∈ SL2(Z) has no negative terms).

We denote the space of modular forms by Mk(Γ).

2. We say f is a cusp form (of weight k for Γ) if:

(a) f ∈ Mk(Γ); and

(b) f vanishes at 0, so the coefficient a0 = 0 in the q-expansion.

We denote the space of cusp forms by S k(Γ).

2.6 The Dedekind η-Function
Most of the modular functions which we will be looking at are related to an im-
portant function called the Dedekind η-function, η(τ). We recall that q = e2πiτ.
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Definition 13. The Dedekind-η function, (or η-product) is:

η(τ) := q1/24
∞∏

n=1

(1 − qn).

η is not itself a modular function; however it satisfies the following transfor-
mation properties.

Theorem 3. Let
√
τ denote the principal branch of the square root. Then:

1. η(−1
τ

) =
√

τ
i η(τ); and

2. η(τ + 1) = e2πi/24η(τ).

In order to prove these transformation properties, we need the weight two
Eisenstein series, E2.

Definition 14. The normalized weight two Eisenstein series is:

E2(τ) :=
3
π2

∑

c∈Z

∑

d∈Z
(c,d),(0,0)

1
(cτ + d)2

= 1 − 24
∞∑

n=1

σ(n)qn,

where σ(n) :=
∑

d|n d is the divisor sum.

We need to justify that our two definitions are actually equal. Note that the
first sum defining E2 is not absolutely convergent, and thus we are interpreting the
sum as the limit of a symmetric sum over |c| ≤ N as N → ∞. Note:

14



E2(τ) =
3
π2

∑

c∈Z

∑

d∈Z
(c,d),(0,0)

1
(cτ + d)2

=
3
π2


∑

d,0

1
d2 +

∑

c,0

∑

d∈Z

1
(cτ + d)2



= 1 +
6
π2

∞∑

c=1


∑

d∈Z

1
(cτ + d)2



= 1 +
6
π2

∞∑

c=1

(−2πi)2
∞∑

m=1

mqcm

= 1 − 24
∞∑

n=1

σ(n)qn,

recalling that:
1
τ

+
∑

d,0

1
τ + d

= π cot(πτ) = πi − 2πi
∞∑

m=0

qm (1)

(see [4]), and differentiating equation 1 with respect to τ.

Lemma 1.
τ−2E2(−1/τ) = E2(τ) +

12
2πiτ

.

Remark 8. In fact, E2 obeys the following transformation, for any γ =

(
a b
c d

)
∈

SL2(Z):

E2[γ]2(τ) = E2(τ) − 6ic
π(cτ + d)

.
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Proof.

E2

[ ( 0 −1
1 0

)]
2
(τ) = τ−2E2(−1/τ)

=
3
π2

∑

c∈Z

∑

d∈Z
(c,d),(0,0)

1
τ2(−c

τ
+ d)2

=
3
π2

∑

d∈Z

∑

c∈Z
(c,d),(0,0)

−1
(cτ + d)2

=
3
π2

∑

d∈Z

∑

c∈Z
(c,d),(0,0)

1
(cτ + d)2

=
3
π2

2
∞∑

d=1

1
d2 +

∑

d∈Z

∑

c,0

1
(cτ + d)2



= 1 +
3
π2

∑

d∈Z

∑

c,0

1
(cτ + d)2 .

Now, for any c , 0,

∑

d∈Z

(
1

cτ + d
− 1

cτ + d + 1

)
= 0

by telescoping sums. Therefore:

E2(τ) = 1 +
3
π2

∑

c,0

∑

d∈Z

1
(cτ + d)2 −

3
π2

∑

c,0

∑

d∈Z

1
(cτ + d)(cτ + d + 1)

= 1 +
3
π2

∑

c,0

∑

d∈Z

( cτ + d + 1 − cτ − d
(cτ + d)2(cτ + d + 1)

)

= 1 +
3
π2

∑

c,0

∑

d∈Z

( 1
(cτ + d)2(cτ + d + 1)

)
.

Noting that this double sum converges absolutely, we can switch the order of
summation.
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E2(τ) = 1 +
3
π2

∑

d∈Z

∑

c,0

( 1
(cτ + d)2 −

1
(cτ + d)(cτ + d + 1)

)

= τ−2E2(−1/τ) +
3
π2

∑

d∈Z

∑

c,0

1
(cτ + d)(cτ + d + 1)

= τ−2E2(−1/τ) +
3
π2 lim

N→∞

N−1∑

d=−N

∑

c,0

(
1

cτ + d
− 1

cτ + d + 1

)

= τ−2E2(−1/τ) +
3
π2 lim

N→∞

∑

c,0

N−1∑

d=−N

(
1

cτ + d
− 1

cτ + d + 1

)

= τ−2E2(−1/τ) +
3
π2 lim

N→∞

∑

c,0

(
1

cτ − N
− 1

cτ + N

)

= τ−2E2(−1/τ) +
3
π2 lim

N→∞
1
τ

∑

c,0

 1
c − N

τ

− 1
c + N

τ



= τ−2E2(−1/τ) +
3
π2 lim

N→∞
1
τ

∞∑

c=1


 1
−c − N

τ

− 1
−c + N

τ

 +

 1
c − N

τ

− 1
c + N

τ




= τ−2E2(−1/τ) +
3
π2 lim

N→∞
1
τ

[(
π cot

(−πN
τ

)
+
τ

N

)
−

(
π cot

(
π

N
τ

)
− τ

N

)]

= τ−2E2(−1/τ) +
3
π2 lim

N→∞
2
τ

(
π cot

(−πN
τ

)
+
τ

N

)

= τ−2E2(−1/τ) − 12
2πiτ

Note that =(−πi/τ)→ ∞ as N → ∞, so cot(−πi/τ)→ πi − 2πi by (1).
�

Proof. (of Theorem 3) First we will take the logarithmic derivative of each side.
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d
dτ

[
log (η (τ))

]
=

d
dτ


2πiτ
24

+

∞∑

n=1

log(1 − e2πinτ)



=
2πi
24
−
∞∑

n=1

(
2πin

1 − e2πinτ

)

=
2πi
24

1 − 24
∞∑

n=1

(
n

1 − qn

)

=
2πi
24

1 − 24
∞∑

n=1

∞∑

k=1

nqkn



=
2πi
24

1 − 24
∞∑

n=1


∑

d|n
d

 qn



=
2πi
24

1 − 24
∞∑

n=1

σ(n)qn



=
2πi
24

E2(τ)

Thus:

d
dτ

[
log

(√
τ

i
η (τ)

)]
=

1
2τ

+
2πi
24

E2(τ)

and
d
dτ

[
log (η (−1/τ))

]
=

2πi
24

τ−2E2

(−1
τ

)

By lemma 1, the two sides differ only by a multiplicative constant, which must
be 1 (by setting τ = i).

Secondly, we note that:

η(τ + 1) = e(2πiτ)/24+(2πi)/24
∞∏

n=1

(1 − e2πiτn+2πin)

= e(2πi)/24q1/24
∞∏

n=1

(1 − 1 · qn)

= e(2πi)/24η(τ).

18



�

From this we note that η24(τ + 1) = η24(τ), and τ−12η24(−1/τ) = η24(τ). Since

SL2(Z) is generated by the matrices
(

1 1
0 1

)
and

(
0 1
−1 0

)
corresponding to

these two transformations, we see that η24 is a modular from of weight 12. In
fact, as the first Fourier coefficient is 0, we see that η24 is a cusp form of weight
12, checking, of course, that we have holomorphy at the only cusp,∞.

Fact 2. ∆(τ) = (2π)12η(τ)24.

This follows from the fact that η24 and ∆ are cusp forms of weight 12 for
SL2(Z), and this is a one dimensional space. See [8] for details.

2.7 γ2 and the Weber Functions
Let

γ2(τ) = ( j(τ))1/3 =
3g2(τ)

4π4η(τ)8

where the cube root is taken to be real when τ is on the positive imaginary axis.

Theorem 4. γ2(3τ) is weakly modular for Γ0(9).

Proof. We begin by noting that since

j(τ) = q−1

1 +

∞∑

n=1

anqn



where an ∈ Q so:

γ2(τ) = q−1/3

1 +

∞∑

n=1

bnqn

 .

Since the an are rational, so are the bn, and thus:

γ2(−1/τ) = γ2(τ)

γ2(τ + 1) = ζ2
3γ2(τ)

where ζ3 = e2πi/3.
Modularity follows via observing that γ2(3τ) has a q-expansion in powers of

q1/9, which gives us the required meromorphy at the cusps. This tells us that
γ2(3τ) ∈ Q( j(τ), j(9τ)). For details, see [2]. �
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The Weber functions are:

f(τ) := e
−πi
24
η((τ + 1)/2)

η(τ)
= q−1/48

∞∏

n=1

(1 + qn−1/2)

f1(τ) :=
η(τ/2)
η(τ)

= q−1/48
∞∏

n=1

(1 − qn−1/2)

f2(τ) :=
√

2
η(2τ)
η(τ)

=
√

2q1/24
∞∏

n=1

(1 + qn).

Proof. (of q-expansions) We begin by expanding out f2(τ):

f2(τ) =
√

2
η(2τ)
η(τ)

=
√

2e4πiτ/24−2πiτ/24
∞∏

n=1

(1 − q2n)
(1 − qn)

=
√

2q1/24
∞∏

n=1

(1 + qn)

Next, we note that:

f1(2τ)f2(τ) =
η(τ)
η(2τ)

√
2
η(2τ)
η(τ)

=
√

2.

Noting that we have absolute convergence:

f1(τ) =

√
2

f2(τ/2)

= q−1/48
∞∏

n=1

(1 + qn/2)−1

= q−1/48
∞∏

n=1

(1 − qn/2)
(1 − qn)

= q−1/48
∞∏

n=1

(1 − qn)
(1 − qn)

(1 − qn− 1
2 )

= q−1/48
∞∏

n=1

(1 − qn−1/2)
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Finally, we let z = τ + 1. Since η(z − 1) = e−2πi/24η(z), we have:

f(z) = e−2πi/48η( τ+1
2 )

η(τ)

= e−2πi/48 η(z/2)
η(z − 1)

= e−2πi/48e2πi/24η(z/2)
η(z)

= e2πi/48f1(z)

= e2πi/48f1(τ + 1)

= e2πi/48q−1/48e−2πi/48
∞∏

n=1

(1 − qne2πine−πi)

= q−1/48
∞∏

n=1

(1 + qn−1/2)

As desired. �

We then have the following important relationship:

Claim 1.
f(τ)f1(τ)f2(τ) =

√
2

Proof.

f(τ)f1(τ)f2(τ) =
√

2q−1/48−1/48+1/24
∞∏

n=1

(1 + qn−1/2)(1 − qn−1/2)(1 + qn)

=
√

2
∞∏

n=0

(1 − q2n−1)
(1 − q2n)
(1 − qn)

=
√

2
∏

n odd

(1 − qn)
∏

n even

(1 − qn)
∞∏

n=1

(1 − qn)−1

=
√

2

�
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Claim 2. The Weber functions have the following transformation properties:

f(τ + 1) = e−2πi/48f1(τ)

f1(τ + 1) = e−2πi/48f(τ)

f2(τ + 1) = e2πi/24f2(τ)
f(−1/τ) = f(τ)
f1(−1/τ) = f2(τ)
f2(−1/τ) = f1(τ)

Proof. We saw earlier that:

f1(τ + 1) = e−2πi/48f(τ)

Similarly:

f(τ + 1) = e−2πi/48
∞∏

n=1

(1 + qne2πin−πi)

= e−2πi/48
∞∏

n=1

(1 − qn)

= e−2πi/48f1(τ)

and:

f2(τ + 1) = e2πi/24
√

2q1/24
∞∏

n=1

(1 + qne2πi)

= e2πi/24f2(τ)

Next, we use the transformation properties of η.

f1

(−1
τ

)
=

η(−1
2τ )

η(−1/τ)

=

√
2τ
i

√
i
τ

η(2τ)
η(τ)

=
√

2
η(2τ)
η(τ)

= f2(τ),
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which also implies f2(−1/τ) = f1(τ), and

f

(−1
τ

)
=

√
2

f1(−1/τ)f2(−1/τ)

=

√
2

f2(τ)f1(τ)
= f(τ)

�

We need a few more facts about the Weber functions. First we note that from
the above transformation properties, f(8τ)6 is weakly modular for Γ0(64). Also,
from the q-product expansion of f, we can see that the q-series has rational coeffi-
cients. From this we note that f(8τ)6 ∈ Q( j(τ), j(64τ)).

Theorem 5.

γ2(τ) =
f(τ)24 − 16
f(τ)8 =

f1(τ)24 + 16
f1(τ)8 =

f2(τ)24 + 16
f2(τ)8

Proof. Let e1, e2, e3 be the points of order two of the Weierstrass ℘-function, that
is the roots of the following cubic:

4X3 − g2(τ)X − g3(τ)X

So:

• e1 = ℘(τ/2)

• e2 = ℘(1/2)

• e3 = ℘((τ + 1)/2)

For more information on the derivation of these properties, see [2]. We use the
following relationship between these numbers and η:

e2 − e1 = π2η(τ)4f(τ)8

e2 − e3 = π2η(τ)4f1(τ)8

e3 − e1 = π2η(τ)4f2(τ)8
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See [2] p. 257. This follows from the expansion of ℘(τ).
We also use the fact that (by definition) e1, e2 and e3 are roots of the cubic

equation:

4X3 − g2X − g3.

We also have the following identities for ei’s, which follow from the fact the
e1 + e2 + e3 = 0

3g2(τ) = −12(e1e2 + e1e3 + e2e3)

= 4((e2 − e1)2 − (e2 − e3)(e3 − e1))

= 4((e2 − e3)2 − (e2 − e1)(e1 − e3))

= 4((e3 − e1)2 − (e3 − e2)(e2 − e1))

Thus,

γ2 =
3g2(τ)

4π4η(τ)8

=
−12(e1e2 + e1e3 + e2e3)

4π4η(τ)8

=
4((e2 − e1)2 − (e2 − e3)(e3 − e1))

4π4η(τ)8

=
4((π2η(τ)4f(τ)8)2 − (π2η(τ)4f1(τ)8)(π2η(τ)4f2(τ)8))

4π4η(τ)8

= f(τ)16 − f1(τ)8f2(τ)8

= f(τ)16 −
√

28

f(τ)8

So, f is a root of:

X24 − γ2(τ)X8 − 16 = 0

The other two equations follow from the other two expansions of 3g2.
�

What this means is that f, eπi/8f1 and eπi/8f2 are all roots of the polynomial:

X24 − γ2(τ)X8 − 16 = 0. (2)
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3 Building the Hilbert Class Field

Let D = l2∆ be the discriminant of an order O ⊂ K. Let µ = D+
√

D
2 .

Heegner’s proof lies on the following important fact.

Theorem 6. j(µ) is an algebraic integer of degree exactly h(O).

This means that when d ≡ 1 (mod 4), and l = 1, j
(

d+
√

d
2

)
is of degree exactly

h(d), the class number of K. As well, when l = 2, this shows that j(
√

d) is of
degree h(4d). We will be able to use this to our advantage.

In order to show Theorem 6 we will show the stronger result that K( j(µ))
generates the Hilbert Class Field of K: a surprising and constructive result, which
pulls together modular functions and class field theory.

In order to prove this stronger result, we need to learn a little more about how
j classifies ideals in OK (or any order O).

First we recall that there is a correspondence between proper ideals a ⊂ OK and
numbers τ ∈ K by the map a = [α, β] 7→ β

α
. Without loss of generality, we will

always order α and β so that τ =
β

α
∈ H . By this correspondence, j(a) = j(τ).

Thus, by the properties of the j-invariant, j characterizes distinct ideal classes
in the ideal class group, that is, a ∼ b if and only if j(a) = j(b).

To see this, let a = [α, β] and b = [δ, ε]. Then for some a, b ∈ OK , without loss
of generality relatively prime,

a ∼ b↔ a[α, β] = b[δ, ε]
β

α
=

bδ
aε

Which is a fractional linear transformation, so j(a) = j(b). The converse is clear.

3.1 The Modular and Class Equations
We now introduce an important matrix group:

Definition 15. Let

C(m) :=
{(

a b
0 d

) ∣∣∣∣∣∣ ad = m, a > 0, 0 ≤ b < d
}
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C(m) has the following property:

|C(m)| = m
∏

p|m

(
1 +

1
p

)

The key to our proofs lies in two important equations, the modular equation
and the class equation:

Definition 16. Let
Φm(X, j(τ)) =

∏

γ∈C(m)

(X − j(γτ))

.

We note that since mτ = γτ where γ =

(
m 0
0 1

)
∈ C(m), Φm( j(mτ), j(τ)) = 0.

Fact 3. The modular equation is Φm(X,Y). It has the following important proper-
ties:

1. Φm(X,Y) ∈ Z[X,Y].

2. Φm(X,Y) is irreducible as a polynomial in X.

3. Φm(X,Y) = Φm(Y, X).

4. If m is not a perfect square, then Φm(X, X) is a monic polynomial of degree
> 1.

5. For p prime, Φp(X,Y) ≡ (Xp − Y)(X − Y p) (mod pZ[X,Y]).

We refer the reader to [2] p. 231.

Remark 9. In order to understand how automorphisms affect j(τ) and j(γτ), we
show a few calculations involving the modular equation:

First, we let γ =

(
a b
0 d

)
∈ C(m). Then, since:

j(τ) =
1
q

+ 744 +

∞∑

n=1

anqn

j(γτ) =
1

qa2/m
e−2πiab/m + 744 +

∞∑

n=1

ane2πiabn/mqa2n/m

=
1

qa2
m

ζ−ab
m + 744 +

∞∑

n=1

anζ
abn
m qa2n

m
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Where ζm = e2πi/m and qm = e2πiτ/m.
Then, for σ a Frobenius automorphism in the Galois group Gal(Q(ζm)/Q),

σ : ζm 7→ ζk
m, we have:

σ( j(γτ)) =
1

qa2
m

ζ−kab
m + 744 +

∞∑

n=1

anζ
kabn
m qa2n

m

= j
((

a kb
0 d

)
τ

)

This shows that σ : j(a) 7→ j(b) for some b. In particular, we observe that
j(γτ) ∈ Q(ζm)((qm)), the ring of formal meromorphic Laurent series.

Definition 17. The Class Equation is:

HK(X) :=
h(d)∏

i=1

(X − j(ci))

where the ci represent distinct ideal classes. We call the j(ci) the class invariants
of OK .

We note that we can form a class equation, HO over any order, O, in a similar
fashion.

In order to prove Theorem 6, we first make the weaker claim, simply that j(µ)
is an algebraic integer.

Lemma 2. j(µ) is an algebraic integer.

Proof. We note that j(µ) is a root of the modular equation Φ2D(X, X). Since 2D
is not a perfect square, Φ2D(X, X) is monic over Z[X], and so j(µ) is an algebraic
integer. �

3.2 Involving the j-invariant
Let M be the splitting field of HK(X) over K. Our goal is to prove first that M = L,
where L is the Hilbert Class Field, and secondly that M = K( j(µ)), i.e., that HK is
irreducible over K.

We will prove this for the special case O = OK , that is l = 1, and d ≡ 1 (mod
4), letting µ = d+

√
d

2 . As we shall see, this is the case we will need for our main
theorem.
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Now, in the usual way, we are going to exclude the bad primes from our work.
The ramified primes are primes which divide:

R = 2d
∏

δ( j(ci))

where the product is taken over the distinct ideal classes of K, and δ(α) is the root
discriminant, δ(α) =

∏
i< j(σi(α) − σ j(α))2. See [2]. For the rest of this section,

we assume p - R.

Lemma 3. Let p = pp′ in K, and let B | p in M. Then for c an ideal class in OK:

j(pc) ≡ j(c)p or j(pc)p ≡ j(c) (mod B).

Proof. The proof follows from the properties of the modular equation. We have:

0 = Φp( j(a), j(pa)) ≡ ( j(a)p − j(pa))( j(a) − j(pa)p) (mod Z[ j(a), j(pa)])

The lemma follows from the fact that B ⊂ Z[ j(a), j(pa)] ⊂ K. �

Note that if we replace c by cp′, we get:

j(c) ≡ j(cp′)p or j(c)p ≡ j(cp′) (mod B).

In fact, a stronger fact which we need is that:

j(p′c) ≡ j(c) (mod B)

If we choose p such that its inertial degree over M is 1, that is p splits completely,
this is possible. This fact follows from the fact that:

j(c)p ≡ j(c) (mod B)

Luckily, Chebotarev’s Density Theorem tells us that we can find such a p, [2], p.
239.

And so we have:

Lemma 4. HK(X) ∈ Q(X) and M/K is abelian.

Proof. Let G = Gal(M/K). By Chebotarev’s Density Theorem, [2] p.170, every
σ ∈ G is generated as Frobenius maps of infinitely many primes B ⊂ M, so for
any σ = ( M/K

B
):

σ(α) ≡ αp (mod B)

28



for all α ∈ OK , where B | p. We can look at the roots of the class equation, and
see that:

σ( j(c)) ≡ j(c)p (mod B)

Noting that the j(c) are distinct mod B, we have:

σ( j(c)) = j(cp′).

From this we can see that for any σ,σ′ ∈ G we have:

σ′[σ( j(c))] = σ[σ′( j(c))]

That is, G is abelian.
The fact that HK(X) ∈ Q(X) follows from noting that since our frobenius

automorphism, σ, permutes the class invariants, H(X) is invariant under σ. �

Lemma 5. M is the Hilbert class field.

In order to prove this, we need the following fact from class field theory:

Fact 4. p splits completely in M if and only if ( M/K
B

) = 1. See [2] p. 107.

Proof. (of Lemma 5) Let σ = ( M/K
p

) be the Frobenius map corresponding to p in
G. Since we know M is abelian, this is well defined. Then:

σ( j(c)) ≡ j(c)p (mod B)

for any B | p. We note that if σ = 1, then :

j(c) ≡ j(c)p (mod B)

This implies that c is a principal ideal. The converse is also clear.
From the above fact, we now have: p splits completely in M if and only if

( M/K
p

) = 1, which happens if and only if p lifts to become principal in M.
We can also see that our σ are defined by how they act on the class invariants,

that is, G is isomorphic to the class group IK . This shows that M is indeed the
Hilbert Class Field. �

We have now dealt with the majority of Theorem 6, and we can quickly show:

Proof. (of Theorem 6) HK(X) is a polynomial of degree h(OK) over Q, and its
splitting field is of degree h(OK). We can see that the σ act transitively on the
class invariants. Therefore, HK(X) is irreducible. Thus, since j(µ) is a root of
Hk(X), it generates M, that is, the Hilbert class field, and so j(µ) is an algebraic
integer of degree exactly h(OK). �
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We turn our attention back to the cube root of j. Surprisingly, we have:

Theorem 7. If d ≡ 1 (mod 4), and 3 - d, then K(γ2(µ)) = K( j(µ)).

Proof. We recall that:

γ2(µ) ∈ Q
(

j
(
µ

3

)
, j(3µ)

)
.

Clearly µ ∼ 3µ as ideals, and since 3 - d, µ/3 is an ideal in OK , (i.e., a root
of the class equation). Thus, K(γ2(µ)) ⊂ K( j(µ)). Clearly, j(µ) ∈ Q(γ2(µ)), since
j(µ)3 = γ2(µ), and this proves the theorem. �

4 The Main Theorem
Theorem 8. The Quadratic Imaginary Fields of class number one are Q(

√
d)

where:
d = −1,−2,−3,−7,−11,−19,−43,−67,−163

4.1 An Easy Case...
When d . 1 (mod 4), ∆d = 4d. Thus, using our quadratic form equivalence, we
can look at the number of quadratic forms of discriminant 4d. It turns out that this
is not that difficult, and we can find all Imaginary Quadratic fields of class number
one where d . 1 (mod 4). We use the following important theorem from the study
of quadratic forms:

Theorem 9. Let n be a positive integer. Then

h(−4n) = 1⇔ n = 1, 2, 3, 4 or 7

Proof. We proceed in cases, following Cox’s exposition of a proof by Landau,
[2]. We first note that the form x2 + ny2 has discriminant −4n. We then construct
a second form with the same discriminant, which is not equivalent to the first.

First, we look at the case where n > 1 is not a prime power. Then, we can
factor n into two relatively prime factors, n = ac such that 1 < a < c. Then, the
form:

ax2 + cy2

also has discriminant −4n. The forms are inequivalent. Thus, h(−4n) ≥ 2.
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Secondly, we let n be an odd prime power. If n + 1 is not a prime power, then
we have n + 1 = ac, where 1 < a < c. Then:

ax2 + 2xy + cy2

has discriminant 4− 4ac = −4(ac− 1) = −4n, and as before, since the coefficients
are relatively prime, our two forms are inequivalent, thus h(−4n) ≥ 2.

If n + 1 is a prime power, that is, a power of 2, then n = pr and n + 1 = 2s. If
s ≥ 6, then 8 ≤ 2s−3 + 1, and so:

8x2 + 6xy + (2s−3 + 1)y2

has relatively prime coefficients and discriminant d = 36 − 4 · 8(2s−3 + 1) =

36 − 4(2s + 8) = 4(9 − (n + 1 + 9) = −4n, so this form is inequivalent to x2 + ny2.
When s = 1, 2, 3, 4 and 5, then n = 1, 3, 7, 15, 31. We discard n = 15, as it is

not a prime power, and direct computation shows that h(−4 · 31) = 3. Thus, for
n = 1, 3, 7, h(−4n) = 1. This can be verified by direct computation.

Finally, we look at the case where n = 2r. If r ≥ 4 then:

4x2 + 4xy + (2r−2 + 1)y2

has relatively prime coefficients and discriminant d = 16 − 4 · 4(2r−2 + 1) =

4(4 − (2r + 4)) = −4n, and so is inequivalent to x2 + ny2.
For r = 3, we can check that h(−4 · 8) = 2, and the remaining cases have class

number one, by direct computation. This concludes the proof.
�

Corollary 1. If K = Q(
√

d) for d < 0, d . 1 (mod 4), then h(K) = 1 if and only
if d = −1 or −2.

4.2 Two Simplifications
Quadratic forms can further reduce the number of fields we need to check. We
have reduced to the case where d < 0, d ≡ 1 (mod 4), so h(K) = h(d). We can
further assume that d is prime, using the following lemma:

Lemma 6. Let d ≡ 1 (mod 4) be negative. If d is not prime, then there are at least
two forms with discriminant d, that is, h(d) > 1.
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Proof. Since |d| ≡ 3 (mod 4), |d| is not a square. Let d = −kl, where k and l are
odd and positive integers greater than 1, and k < l. Since l · k ≡ 3, one of l or k
must be ≡ 3, and the other ≡ 1, and so l + k ≡ 0 and 3k − l ≡ 0 (mod 4).

Thus the forms

Q(x, y) =
k + l

4
x2 +

l − k
2

xy +
k + l

4
x2

with discriminant
(

l−k
2

)2 − 4 (l+k)(l+k)
16 = l2−2lk+k2

4 − k2+2lk+k2

4 = −lk = d, and

Q̃(x, y) =
1 − d

4
x2 − d + 1

2
xy +

1 − d
4

x2

with discriminant:
(

d+1
2

)2 − 4 (l−d)(1−d)
16 = d2+2d+1

4 − 1−2d+d2

4 = d are inequivalent.
We can see this by noting that since both forms are symmetric in x and y we can
rewrite them as:

Q(x, y) =
l
4

(x + y)2 +
k
4

(x − y)2

and
Q̃(x, y) =

|d|
4

(x + y)2 +
1
4

(x − y)2

So we are just looking at the forms Q(x, y) = (kx′2 + ly′2)/4 and Q̃(x, y) =

(x′2 + |d|y′2)/4 , where x′ and y′ must have the same parity (since x + y and x − y
do).

With this restriction in place, note that the smallest positive value that Q̃ takes
is 1 (taking [x′, y′] = [2, 0]), while the smallest three values that Q could take are
k, (k + l)/4, and l (taking [x′, y′] = [2, 0], [1, 1] and [0, 2]). Since 3 ≤ k < l, these
are all greater than 1. So the forms do not represent the same integers and are not
equivalent.

�

We present one more simplification. Using some basic facts from the study of
orders in Quadratic Imaginary number fields, we have the following:

Fact 5. Letting
(

d
2

)
be the Kronecker symbol, so

(
d
2

)
:=


0 if d . 1 (mod 4)
1 if d ≡ 1 (mod 8)
−1 if d ≡ 5 (mod 8)
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We have:
h(4d)
h(d)

= 2
(
1 −

(
d
2

)
1
2

)

For a proof, see [2].
From Fact 5, we can see that if d ≡ 1 (mod 8), then h(4d) = h(d). From

Lemma 6, we know that if d ≡ 1 (mod 8), d < 0 and h(4d) = 1, then d = −7.
Thus, we can concentrate on the case where d ≡ 5 (mod 8).

4.3 The Harder Case
Following Stark’s notation, we use the following terminology:

J = j(
√

d) F = f(
√

d)

h = h(d) j = j
(
−3+

√
d

2

)

f = eπi/8f2

(
−3+

√
d

2

)
γ = γ2

(
−3+

√
d

2

)

We let K = Q(d) be an imaginary quadratic number field with class number
one. We assume that d ≡ 5 (mod 8). We also know that d = −p, where p is
prime, hence we can assume that 3 - d, since direct computation shows that that
h(−3) = 1. We note that −3+

√
d

2 is SL2(Z)-equivalent to d+
√

d
2 . Then (given 3 - d), j

and γ are integers, since they generate the Hilbert Class Field which is of degree
h = 1 over K.

We recall that f is a root of X24 − γX8 − 16 = 0, and that J is a root of
X24 − J1/3X8 − 16 = 0. We need to relate F2, f 2, and J, in fact, we will show that
they generate the same extension over Q.

Claim 3. f 2 = 2
F2 . Hence Q(F2) = Q( f 2).

Proof. Recalling that η(τ + 1) = e2πi/24η(τ), we see that η(
√

d) = e2πi/8η(
√

d − 3)
and η

(
1+
√

d
2

)
= e2πi/12η

(−3+
√

d
2

)
, and so
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2
F2 = 2e

2πi
24
η2(
√

d)

η2
(

1+
√

d
2

)

= 2e2πi/24 e2πi/4η2(−3 +
√

d)

e2πi/6η2
(−3+

√
d

2

)

=

eπi/8f2

−3 +
√

d
2




2

= f 2

�

We note that since

J =

(F24 − 16
F8

)3

then J ∈ Q(F2). We can strengthen this, as the following claim shows.

Claim 4. F2 ∈ Q(J).

Remark 10. One of the problems in Heegner’s original proof is that he claims
the stronger result that F ∈ Q(J). Unfortunately, this is presented without proof.
Though not needed for the class number one problem, this was later proven by
B.J. Birch. This is one of the key reasons why many doubted the veracity of
Heegner’s proof. As to the more general result that F2 ∈ Q(J), both Heegner
and Deuring present this fact without proof, resting on earlier work of Weber.
Stark, however, proves this fact by using a series of modular equations. Cox
shows this by using some more sophisticated class field theory. Here, we present
a more basic explanation, resting heavily on the properties of modular functions,
For more elegant proofs, see [2] and [11].

Proof. We recall that since f(8τ)6 is weakly modular for Γ0(64), then f(
√

d)6 ∈
Q( j(

√
d/8), j(8

√
d)).

Since
√

d
8 corresponds to the ideal [8,

√
d] ∈ OK , then j

( √
d

8

)
is a root of the

class equation, and is in the class field, Q( j(
√

d)). This proves that F6 ∈ Q(J).
Since

F2 =
(F6)4 − 16

J · F6
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then F2 ∈ Q(J) as well.
�

Using Fact 5, and the fact that
(

d
2

)
= −1, we have h(4d) = 3h(d). We use the

fact that J = j(
√

d) generates the class field corresponding to the order O = 2OK .
We know from earlier that J = j(

√
d) is an algebraic integer of degree h(4d) =

3h(d), [2]. Thus, J is algebraic over Q of degree 3h. In fact, from above, it is at
most cubic over Q( j). Looking at the degrees of our field extension, we have:

[Q(J, j) : Q] = [Q(J, j) : Q( j)][Q( j) : Q] ≤ 3h

and

[Q(J, j) : Q] ≥ [Q(J) : Q] = 3h

Hence

Q(J, j)
1

ppppppppppp

3h

3

HH
HH

HH
HH

H

Q( f 2) = Q(J)

3h
NNNNNNNNNNNNN

Q( j)

Q

h

vvvvvvvvvv

Since [Q(J, j) : Q] = 3h and Q(J) = Q(J, j) = Q(F2) = Q( f 2). We note that
since h = 1, we have:

Q(J, j)
1

ppppppppppp

3

3

HH
HH

HH
HH

H

Q( f 2) = Q(J)

3
NNNNNNNNNNNNN

Q( j)

Q

1

vvvvvvvvvv

Clearly, f 2 is of degree exactly 3 over Q. Since f satisfies equation (2), a
monic polynomial over Z, f and hence f 2 are algebraic integers and hence f 2

satisfies the equation:

X3 + aX2 + bX + c = 0
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for some a, b, c ∈ Z. By rearranging and squaring both sides we have f 2

satisfying:

(X3 + bX)2 = (−aX2 − c)2

X6 + 2bX4 + b2X2 − a2X4 − 2acX2 − c2 = 0

So f 4 satisfies the cubic equation:

X3 + (2b − a2)X2 + (b2 − 2ac)X + (−c2) = 0

or
X3 + dX2 + eX + g = 0

where

d = 2b − a2

e = b2 − 2ac

g = −c2.

By separating and squaring again, we find that f 8 satisfies the cubic equation:

X3 + (2e − d2)X2 + (e2 − 2dg)X + (−g2) = 0

but from the fact that f is a root of (2), f 8 is a root of the cubic:

X3 − γX − 16 = 0.

Since f 8 is of degree exactly 3 over Q, and both polynomials are monic, we
can conclude that they are equal, therefore:

2e − d2 = 0 (3)

e2 − 2dg = −γ (4)

g2 = 16 (5)

Clearly, g = −4 = −c2 and c = ±2. Simple algebra shows that we can
assume c = 2 without changing our equation, and from equation (3) we have the
Diophantine Equation:

2(b2 − 4a) = (2b − a2)2
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.
Looking at this equation mod 4, we can see that a and b must be even. Making

the substitution X = −a/2 and Y = (b−a2)/2, we obtain the Diophantine equation:

2X(X3 + 1) = Y2. (6)

This is called Heegner’s Diophantine Equation. Luckily, finding all the integer
solutions to equation (6) is not difficult.

Theorem 10. The only solutions to equation (6) are:

(X,Y) = (0, 0), (−1, 0), (1,±2), and (2,±6).

Proof. This proof follows Cox’s exposition, see [2].
We first note that X and X3+1 are relatively prime. Thus in order for 2X(X3+1)

to be a square, ±(X3 + 1) must be a square or twice a square. We then have four
cases:

1. X3 + 1 = Z2

2. X3 + 1 = −Z2

3. X3 + 1 = −2Z2

4. X3 + 1 = 2Z2

The only solutions to the first case are (X,Z) = (−1, 0), (0,±1), (2,±3) and to
the second case, (X,Z) = (−1, 0). The first case is the most difficult to show, and
was first proven by Euler, using infinite descent. For details, see [2], pp. 283-285.

For the third case, we note that in Z(
√−2), there are only two units, ±1. Thus:

X3 + 1 = −2Z2

X3 = (
√
−2Z − 1)(

√
−2Z + 1)

As both of these factors are relatively prime, they must each be a cube in Z(
√−2).

So:

(
√
−2Z + 1) = (a +

√
−2b)3

= a3 − 6ab2 +
√
−2(3a2b − 2b3)
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Thus:
a(a2 − 6b2) = 1

Which implies that a is a unit, so a = ±1. Solving for b, we find that the only
solution is (X,Z) = (−1, 0). By a similar argument, the only solutions to the
fourth case are (X,Z) = (1,±1). The rest of the proof follows.

�

Now we have the following solutions for (a, b), and from equation (4) we know
γ = −(b2 − 4a)2 − 8(2b − a2). Using computations, we find that these values of γ
correspond to known quadratic fields, Q(

√
d), see [2], p.261.

X Y a = −2X b = 4X2 +2Y γ d
0 0 0 0 0 -3
-1 0 2 4 -96 -19
1 2 -2 8 -5280 -67
1 -2 -2 0 -32 -11
2 6 -4 28 -640320 -163
2 -6 -4 4 -960 -43

These are the only solutions for d ≡ 5 (mod 8).

5 Conclusion
The class number one problem has now been completely solved. Heegner’s proof
(modulo appropriate corrections) is alluring in its simplicity, and in its elegant use
of elementary number theory. Lately, newer proofs have been published, utilizing
the concept of moduli spaces and modernizing the language. See, for instance, the
work of Imin Chen, [1].

After solving the class number one problem, Baker and Stark completed the
classification for class number N = 2. Goldfeld showed that if the Birch -
Swinnerton-Dyer Conjecture holds, the problem of finding all Quadratic Imag-
inary Fields of class number N was a finite computation. Using methods of Gross
and Zagier, this was soon proven unconditionally, and the computation was possi-
ble. Using these computational methods involving elliptic curves, the cases N ≤ 7
and odd N ≤ 23 were solved.

A 2004 paper by Mark Watkins made a huge leap, classifying all Quadratic
Imaginary Fields of class number N ≤ 100 [12]. Watkins uses L-functions with
low-height zeros at the critical point.
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Today, many are trying to expand on this problem, by using these methods to
classify other field extensions, such as Imaginary Quartic Fields. One of the inter-
esting things about the class number problem, and a reason why it still maintains
its glamour 40 years after the first proof is in its simplicity to state, and in the way
that it pulls together many seemingly separate areas of number theory.
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Appendix - List of Notation
The Artin Symbol ( L/K

B
): the Frobenius automorphism in Gal(L/K) associated to

B

C(m) :=
{(

a b
0 d

) ∣∣∣∣∣∣ ad = m, a > 0, 0 ≤ b < d
}

∆d = ∆: the discriminant of OK

∆(τ) := g3
2(τ) − 27g2

3(τ), the discriminant function

D = l2∆: the discriminant of an order Ol ∈ K

η(τ) := q1/24
∞∏

n=1

(1 − qn)

E2(τ) :=
3
π2

∑

c∈Z

∑

d∈Z
(c,d),(0,0)

1
(cτ + d)2 = 1 − 24

∞∑

n=1

σ(n)qn

f(τ) := e
−πi
24
η(τ+1

2 )
η(τ)

= q−1/48
∞∏

n=1

(1 + qn−1/2)

f1(τ) :=
η(τ2)
η(τ)

= q−1/48
∞∏

n=1

(1 − qn−1/2)

f2(τ) :=
√

2
η(2τ)
η(τ)

=
√

2q1/24
∞∏

n=1

(1 + qn)

f [γ]k(τ) := (cτ + d)−k f (γτ) for γ =

(
a b
c d

)
∈ SL2(Z)

Γ(N) :=
{ (

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣ a ≡ d ≡ 1, b ≡ c ≡ 0 (mod N)
}
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Γ0(N) :=
{ (

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣ c ≡ 0 (mod N)
}

Γ1(N) :=
{ (

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣∣ c ≡ 0, a ≡ d ≡ 1 (mod N)
}

g2(τ) := 60
∑

c,d∈Z
(c,d),(0,0)

1
(cτ + d)4

g3(τ) := 140
∑

c,d∈Z
(c,d),(0,0)

1
(cτ + d)6

γ2(τ) := ( j(τ))1/3 =
3g2(τ)

4π4η(τ)8

h(OK) = h(K): the ideal class number of a field

h(D): the form class number

The Hilbert Class Field of a number field K is the maximal (relatively) Abelian
unramified extension L/K

HK(X) :=
h(K)∏

i=1

(X − j(ci)): the Class Equation

Heegner’s Diophantine equation: 2X(X3 + 1) = Y2

IK: the Ideal Class Group

j(τ) :=
1728g3

2(τ)
∆(τ)

K: an algebraic number field, usually Q(
√

d) where d < 0
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The Kronecker symbol:
(

d
2

)
and:

(
d
2

)
:=


0 if d . 1 (mod 4)
1 if d ≡ 1 (mod 8)
−1 if d ≡ 5 (mod 8)

µ = D+
√

D
2

O: an order of K

OK := {a ∈ K| the minimal polynomial of a is monic}

Φm(X, j(τ)) :=
∏

γ∈C(m)

(X − j(γτ))

Φm(X,Y): the Modular Equation

Q(x, y) = ax2 + bxy + cy2 ∈ Z[x, y] is a quadratic form with discriminant d :=
b2 − 4ac

q = e2πiτ

R(Λ): the ring of complex multiplications of a lattice, Λ

σ(n) :=
∑

d|n d: the divisor sum

Stark’s Notation:

J = j(
√

d) F = f(
√

d)

h = h(d) j = j
(
−3+

√
d

2

)

f = eπi/8f2

(
−3+

√
d

2

)
γ = γ2

(
−3+

√
d

2

)
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